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A technique is described that allows an assessment of the various candidate rate laws
that have been proposed to predict the dissolution kinetics of calcite under high pH
conditions. A combination of theoretical modelling and experimentation allows us to
choose the following rate law as that which best fits the observed data:

rate (mol cm™?s7') = k—4’[Ca®'], [COZ7],,

where & =k/K,, and K, is the solubility product of calcium carbonate. The
modelling developed differs from previous studies in that it deals in terms of surface
concentrations of reactants, [Ca*']; and [CO27], as opposed to those present in bulk
solution.

1. INTRODUCTION

In the previous paper (Compton & Unwin 1989) the importance of the investigation of the
dissolution of calcium carbonate in aqueous solution, and its relevance to problems of an
industrial and environmental nature, was discussed. The problems and limitations of
traditional techniques hitherto used, such as absence of well-defined hydrodynamics and the
lack of control over surface morphology of the sample, were defined. A general experimental
methodology whereby these difficulties could be overcome was presented. The basic idea of this
technique is to flow a solution over the surface of the crystal and then to detect either unreacted
reactants or reaction products downstream of the crystal, by potentiometric or by amperometric
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48 R.G.COMPTON AND K. L. PRITCHARD

methods. This method was used to study calcite dissolution under acidic, i.e. pH < 4,
conditions and in this paper we use a similar methodology to investigate the dissolution at
higher pH (greater than 7) and in the absence of CO,.

Many equations have been proposed that attempt to model the dissolution of calcium
carbonate under the conditions of interest. Some of these equations are empirical in nature,
others have a more mechanistic basis. One of the former type is that of Dorange & Guetchidjan
(1978) who studied the dissolution of marble chips over a range of partial pressures of CO, and
background Ca®* concentrations. They proposed that the rate of dissolution was determined
simply by the distance of the system from equilibrium, i.e.

rate = K #4([Ca®*],, —[Ca®]). (1)

Sjoberg (1976) did experiments on powdered calcite samples and established the following
equation for the dissolution rate

rate = KS(KED —[Ca** ]} [CO% T3, (2)

where K, is the calcite solubility product, [Ca**] and [CO3 ] are the bulk calcium and
carbonate concentrations, and Kj is a rate constant.

A rate equation based on a mechanistic model of dissolution was proposed by Plummer
et al. (1978) in which the rate is given by,

rate = £y ay++k, auco; + ks Au,0— kyacye+ Quco;» (3)

where a, denotes the bulk solution activity of species x and £, k,, £, and £, are rate constants.
In the absence of CO,, and because for pH > 7 the first term is negligible, equation (3) reduces
to
rate = ky—ky agyr+ ayco;- (4)

This equation implies that there is a forward reaction with water, which continues at a
constant rate, and a back reaction that is dependent upon the activity of calcium and
bicarbonate ions. Whereas Plummer e/ al. assumed that it was appropriate to work with bulk
activities, or concentrations, in this work we will use surface quantities for the reasons alluded
to subsequently. Thus in the modelling described below we will adopt a form of equation (4)
in which a¢,2+ and ago- are replaced by [Ca*']; and [HCOj],, where the subscript denotes the
surface value and we have chosen to work with concentrations rather than activities, which is
a reasonable approximation under conditions of fixed ionic strength.

In principle other mechanistic rate laws of the general form of (4) are conceivable, i.e.

rate = k—k,[Ca®"],[COZ ], (5)
or rate = k— k,[Ca*], [COZ], — k,[Ca®*], [HCO;].. (6)

If we assume that equilibrium is reached when the product of the surface concentrations of
Ca** and CO} equals the solubility product, we may show that equations (4), (5) and (6)
reduce to the same form. To this end consider equation (4), which we may write as

rate = k—k,[Ca®*"], [HCO;]..
We know that
[HCO3] = [COZ ] [H']/K,,
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CALCITE DISSOLUTION KINETICS 49
where K, is the second dissociation constant of carbonic acid, and so we can write
rate = k— (k,[Ca®"],[CO3] [H'],/K,). (7)

Now when the product [Ca®**], [COZ ], equals the solubility product of calcite the rate must
equal zero, so

k= kK, /[H"], K,,.
[f we substitute this expression into equation (7) we get,
rate = k— (kK,[Ca®"],[HCO;],/[H'],K,,). (8)
But K,[HCOg],/[H"], = [COF];,
thus from equation (8) we find that ,
rate = k— (k/K,y) [Ca*], [COZ],. (9)

Consider next equation (5). We can again put the rate equal to zero when the product
[Ca®*], [CO27], equals the calcite solubility product, from which it follows that

ky = k/ K,
and so rate = k— (k/K,) [Ca®**],[COF],,

which is of the same form as (9).
We next consider equation (6). At equilibrium

k = [Ca™]; (k,[CO5 7], + k,[HCO3],), (10)
and substituting [HCO;], = [CO% |, [H"],/K,
into equation (10) we obtain
k= [Ca*], (k,[CO5],+ (k,[COZ, [H']/Ky)),
or k= Ky (k,+ (k,[H"],/K,)).
We may then substitute for £, in equation (6):

rate = k—(=—"28) (car, (cot,

sSp

ky[Ca®'], [CO57], [H'],
_ X,

= k= (k/Kyy) [Ca*"),[COF ],

which again has the same form as equation (9). Thus we have shown how, under the
assumption that dissolution ceases when the calcite solubility product is reached, the rate laws
(4), (5) and (6) may be reduced to the same kinetic form. One may conclude that kinetic
analysis at a fixed pH alone cannot distinguish between the three mechanisms implied by these
three equations.

In this paper we develop a numerical computational method whereby we can model the
dissolution for any of the given rate equations. The crucial difference between this work and
all previous modelling is that we consider surface concentrations in our rate equations. As
pointed out elsewhere (Sjoberg & Rickard 1984), the very nature of the dissolution process
dictates that it is the concentrations of species at the surface that control the reaction or indeed

4 Vol. 330. A
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50 R.G.COMPTON AND K.L.PRITCHARD

any heterogeneous process. Thus using these instead of bulk solution concentrations should give
us much more detailed information concerning the kinetics and mechanisms involved. By a
comparison of experimental data with that predicted by our modelling work we may deduce
which of the above candidate equations best reflects the true processes controlling dissolution.
Of course the surface concentrations may be related to bulk concentrations, but only if the
prevailing mass transport conditions are known. Although this is indeed the case in the
experiments described here because of the defined hydrodynamics of the flow cell, this will not
generally be so. In particular, for the case of dissolving powders it will be extremely difficult
to relate the two. Thus the use of surface concentrations is the only general way of writing rate
equations for the calcite dissolution reaction.

2. EXPERIMENTAL

Experiments were done using the flow cell previously described and characterized (Compton
& Unwin 1990). In essence, this consists of a rectangular duct cut in a perspex block and closed
by a cover plate. The latter comprises a crystal of calcite (Roger Taylor Minerals, Surrey,
U.K.) cast into a resin block (Araldite, Ciba-Geigy). This cover plate may be polished smooth
by the use of diamond lapping compounds (Engis Ltd) of progressively finer grit size, so that
the crystal is flat and lies flush with the surface. Incorporated into the cover plate is a flat
membrane pH electrode (MI-404, Microelectrodes Inc.), which is located immediately
downstream of the crystal. The flux of calcium ions leaving the crystal surface is detected with
a calcium ion selective electrode (1se) (MI-600, Microelectrodes Inc.) located in a mixing
chamber as shown in figure 1. Dye injection experiments (using fluorescein in aqueous alkali)
showed that material arriving in the mixing chamber was fully homogenized before detection
at the calcium sensor. Thus the latter responded to the average bulk calcium concentration of
the solution leaving the zone of the dissolving crystal. Typical experiments involved a channel
3 cm long, 0.138 cm deep and 0.57 cm wide, a crystal of length 0.66 cm and flow rates of
between 1 x 107 and 0.5 cm?® s,

pH Ca®

Ficure 1. A schematic diagram of the channel unit showing the position of the potentiometric electrodes.

Solutions were made up using triply distilled de-ionized water (resistivity > 18 MQ cm™?)
and AnalaR grade reagents. All solutions were made up to a total ionic strength of
0.5 mol dm™® using KCl and were degassed for several hours with argon to expel CO,. The
solution was adjusted, by the addition of NaOH or HCI, to the required pH. Solutions were
placed in a reservoir and fed by gravity through the channel and so over the crystal. The flow
was controlled by the height of feed and a pre-calibrated capillary placed downstream of the
channel. The block containing the channel was placed in a thermostatted box held at
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CALCITE DISSOLUTION KINETICS 51

(25+0.2) °C. The box and all solution feed tubes were argon jacketed to exclude CO,
thoroughly.

The range of Ca®" concentrations encountered during these experiments varied between
1x1077 and 1 x 10"® mol dm™2. Unfortunately this lay outside the region of linear response of
the electrode used. Thus the possible experimental error was too large to allow the Ca**
electrode to be used to discriminate between the possible mechanisms. However, the readings
obtained did show that Ca®' concentrations to be of the same order of magnitude as those
predicted by the modelling work.

3. THEORY

In this section, theory is derived that relates the potentiometric response at both the pH and
calcium ion-selective electrodes in the flow system to the mechanism of the dissolution taking
place at the calcite surface and identifies the influence of solution flow rate and flow cell
geometry. As indicated above, it is the dissolution process under conditions of pH > 7 that is
of interest in this paper. However, because the relevant convective-diffusion equations for the
process under consideration have to be solved by a numerical procedure (the ‘backwards
implicit finite difference (BIFD) method’) we first tackle the corresponding problem for the
dissolution of calcite at around pH 3.0 under conditions where the process is known to be
controlled by the rate of transport of H* to the crystal surface. The reason for this is that under
these conditions the sought responses can be deduced analytically. The corresponding low pH
problem is then tackled numerically via the BIFD method and comparison of the results of the
two approaches used to validate the computational method. Finally the high pH problem is
addressed using the BIFD approach. The various dissolution mechanisms detailed in the
introduction are considered in turn and, for each, the signal on the pH electrode and the Ca®**
isE are related to the flow cell geometry, solution flow rate and the kinetic parameters in the
selected calcite dissolution rate equation.

(a) Low pH region
(i) Analytical solution

1

e
Xe

X

e

Ficure 2. The coordinate system used in both the numerical and analytical solutions.

In this section, the response of the pH electrode downstream of the dissolving calcite crystal
is calculated for the case where the calcite dissolution is assumed to take place via rate
determining mass transport of H* to the crystal surface. This mechanism has been shown to
operate at low pH (ca. 3.0) in numerous studies (Compton & Daly 1984 ; King & Liu 1933;
Nierode & Williams 1971 ; Berner & Morse 1974 ; Sjoberg & Rickard 1984 ; Lund ¢t al. 1975;
Barton & Vatatham 1976), including in the flow cell used in this work, provided the flow rates
are sufficiently low (Compton & Unwin 1990).
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52 R.G.COMPTON AND K.L.PRITCHARD
The time-dependent convective diffusion equation is

G _ DV%—(V Tiply V%)

ot Tox YOy (11)

where ¢ is the H* concentration and V,, V,, V, are the cartesian components of the solution flow
velocity.
Provided a sufficient lead in length is present upstream of the crystal surface (Compton &
Unwin 19865),
V=W—=(y=n/y)]), V,=V.=0, (12)
where /= 3b.
That is the solution adopts a parabolic velocity profile with Vj the axial velocity in the centre

of the channel. Then for steady-state conditions we have,
D %c/0y® = V,0c/0x, (13)

where we have ignored diffusion in directions other than normal to the surface of the crystal.
This approximation has been thoroughly explored and has been shown to be entirely
satisfactory for crystals of the size used in the work described here (Compton & Unwin 19864).
Providing convection within the flow cell is efficient compared with diffusion then
concentration changes will be confined to being close to the wall of the channel that contains
the crystal, and following Léveqie (1928) and Levich (1962) we may write

V. = Vo((2y/h)— (/%)) ~ 2V, y/h. (14)

We can replace the parabolic velocity profile by a linear one near the channel wall. Thus
equation (13) becomes
%

Oc
D= 2Vu/h) g, (15)

We define a parameter y such that y = x/x,, where x is the distance downstream of the
upstream edge of the crystal and x, is the crystal length, then equation (15) becomes
% _ 2V,y 0.

D=t o (16)

Further simplification results from introducing the parameter U, such that U = (C—C,)/C,,
where C is the bulk H* concentration. Thus (16) becomes

P _ 2K C ydU

T o 1
Solution of equation (17) is facilitated by means of the substitution
£= (2V,C,o/ Dhx, )}y,
from which it may be shown that equation (17 ) becomes,
QU /OE® = £EQU/dy. (18)

Solution of equation (18) in the zone of the crystal. In the zone of the crystal the boundary
conditions are:

y—=>oo,U=0; x=0,U=0; y=0, U=-—1.
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CALCITE DISSOLUTION KINETICS 53
Under the Laplace transform, equation (18) becomes
d*U/dE? = s¢U, (19)

where s is the Laplace transform variable. Equations of this type have the following solution
in terms of Airy functions (Carrier 1968),

U = AAi ($€) + BBi (s3). | (20)

Now from the boundary conditions, as § -+ 00, U0, we find that as £ 00, Ai (§) >0 and
Bi (§) > o0 (Abramowitz & Stegun 1966). Thus we may deduce that B = 0, and (20) becomes

U= AAi(s%), (21)

where 4 is a constant, which may be deduced as follows. From the boundary conditions, when
£ =0 then U= —1, the transform of this boundary condition gives us that when £ =0,

U = —s'. Thus when § =0, i
— 51 = 4Ai(0),

so that 4=—1/5sAi(0).
Substituting into this equation (21) gives us
U= —Ai(s€)/sAi (0). (22)

Solution of equation (18) in the zone of the sensor. To facilitate mathematical solution in this zone
we define a parameter , such that y, = y—1, and split the function U into two parts U, and
Uy such that U = U,— U,, where U, relates to the zone over the crystal and U, to that over
the sensor. Substitution of these parameters into equation (18) shows that we must now solve
the equation

0*U,/OE® = £0U /0y, (23)
because U, is already a solution of (18) as given by (22).
The boundary conditions in the region are:

Xs=0 and £=0, U,=0;
>0, Uy=0;
y=0, oU,/0§ =0dU,/0¢.
Again, solutions to equation (23) will be of the form
Uy = GAL(p%), (24)

when p is the Laplace Transform variable now with respect to x,. From equation (22) we
obtain

o0,

_AV(0)
K3

o SAI0)

Inversion of the above (Abramowitz & Stegun 1966) gives

U,
(3

_ X A (0)
o L@ Ai0)

(25)
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54 R.G.COMPTON AND K. L. PRITCHARD
and we can then use the boundary conditions specified above to show that

U,

| = A | (26)
where B =—Ai"(0)/T(3) Ai(0).
Because U, = G Ai (p€), then

0(7* 1 .

—7 | =PGAI(0), (27)

and so from equations (26) and (27) we obtain
PCAT (0) = BZ, (x.+1),
and G = (BIFAY (0)) £, (x+ 1) (28)
Substitution of (28) into equation (24) gives us
Uy = (B/1F AV (0) Ai (1) £, (x,+1) 7" (29)
Now U(£=0) = U,(£ = 0)— U, (£ = 0), and so by substitution of equations (22) and (29) we

obtain:

_ 1 BAi(0) 1
UE=0)=-——= L (xs+1)75 30
€=0) == 0 Gt (30)
To complete the solution we now need to inverse Laplace Transform equation (30), which is
done as follows. Let L
= H(p) = ZhH (X, (31)
and L(E+1)7 = E(p) = Zh(). (32)

We know (Abramowitz & Stegun 1966) that
LY = x3TG). (33)
Also, the convolution theorem (Carrier 1968) tells us that
1 f Silx (34)

and thus from equations (31), (32), (33) and (34) we obtain

_% Xs _%
g—l”?(Xs;'_ 1) — f 1 . t ; ¢ (35)
# (Xs+ 1= T()
Substituting equation (35) into equation (30) gives
U= —14— 1 JXS L (36)
FGTE) o (xe+1—056
Integration of equation (36) by parts gives
1 1 Xs t%
U=—1+————[3 ;—J —————,dt]. 37
THTHLT ), v 10 o

Now U= (C-C,)/C
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CALCITE DISSOLUTION KINETICS 55
so that (37) becomes o C, [3 %_st £ dt] (38)
THTEL™ Jo e+1—0t T
The integral in equation (38) was evaluated numerically by replacing the integration by a
summation, i.e. v A e 't%
f 1dt =2 1AL,
0 (Xs+1_t)3 0 (Xs_'_l_t)3

and a satisfactory convergence was obtained with At = ¢/5000.

In conclusion to this section we note that we have achieved an analytical solution giving us
the surface H* concentration downstream of the crystal. We note that the analytical theory
predicts no flow rate dependence of the concentration of H* over the sensor surface.

(ii) Numerical solution

A detailed description of the BIFD method and its applicability to problems in the channel
environment has been given elsewhere (Anderson & Moldoveanu 1984; Compton et al.
1988). In essence the method proceeds as follows. The xy plane above the crystal is covered
in a two-dimensional finite difference grid. The number of grid points in the x direction is K
and their separation is Ax. The number of grid points in the y direction is J, their separation
being Ay. In the BIFD method we make the following approximations:

0c/0x = (C k41— C; )/ Ax,
and azc/ayz = (Cj_1, k11 _2Cj, w1 T Cj+1,k+1)/A1/2> ‘

where C; , is the H" concentration at the point whose coordinates are j, k, where j varies from
0 to J and £ varies from O to K. The approximations mentioned above effectively linearize the
concentration gradient between two grid points. We may now substitute these expressions into
the convective diffusion equation for H*, under steady-state conditions, which may be written
as (Compton & Unwin 1990):

% [(6V\(y y\oc _
o5 (i) )15

where V, is volume flow rate, 4 is the channel depth and 4 is the channel width. This gives us
the following expression

D D

TAN2 (gj—l,k+1_2gj,k+1 +gj+1,lc+1) =5z (& ke _gj,k) =0, (39)
(Ay) A;(Ay)
where &x=C1/Cy

and A; = DAxb*d/ 6V, j(Ay)® (b—jAy).
Equation (39) simplifies to the form |
8o = A& et 24+ 1) & i — A g k- (40)
The boundary conditions relevant to this problem are
(i) whenx=0 thenC=C,, ie g =1,
(i) wheny=0 then(C=0, ie gy ,=0,
(iii) wheny =54 thendc/dy =0, 1ie. g, ;=g 1
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56 R.G.COMPTON AND K. L. PRITCHARD
Substituting these boundary conditions into equation (40) we get,
G1e = A1) gk — Ao ks
Lo = A&z T At 1) &y
Gk =—N& 1T CA4+1) g ki — A8 g for j=2->J-2.

These J—1 simultaneous equations may be expressed by the following matrix equation
(Anderson & Moldoveanu 1984)

a
/
A
\
A

g

4 71 [h 6 0T Y,
d, a by o U,

THE ROYAL A
SOCIETY

dy s ayy byy ¢y U,

dy1 ] 0 a; b, LU,

where d; =g for j=1->J-1,

PHILOSOPHICAL
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U, =gt for j=1->J-1,

a;=—A; for j=2->J-1,

b;=2M+1 for j=2-J-2,
b,y =A,+1,

6= —A for j=1-J-2.

The matrix equation (41) is solved by the Thomas algorithm (Lapidus & Pinder 1968) when,
if we represent equation (41) by

d=TU,
/\\q‘ the tridiagonal matrix 7 is factorized into two giving
A |
< =TT,
5 E or explicitly
e 2 2 011t B 0
|
= a, « 1 B
I O 2 2 2
F m . .
-
§% T= a; & 1 ﬂy
==
£5.
2%
92 @y Ay_2 L B,
Eé 0 a, , a, ,dL0 1 1
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CALCITE DISSOLUTION KINETICS 57

Multiplying out we get
oy = by,

o;=b;—a;p;, for j=2->J—1,

and Bi=¢/a; for j=1-J—1.
We now wish to find a vector f such that
T.f=d,

from which we get Si=d [/,
and Ji=(d;— (4 fi-1)/oy; for j=2->J-1.
We now find the vector U from the relation

f=T,U,
and therefore U,,=/.
and U, =fi—(B;U;.1)-

In this way we calculate the vector U from the vector d, i.e. from each vector of concentrations
we may calculate the next vector downstream. Because we know the vector at the upstream
edge of the crystal, we may calculate the concentrations for the entire region above the crystal.

To calculate the concentrations in the region downstream of the crystal we use essentially the
same technique as described above. The exceptions being first, that the upstream boundary
condition is now given by the vector relating to the downstream edge of the crystal and second,
that the surface boundary condition is now a ‘no flux’ boundary condition, i.e.

8o,k = 81,k

The equations for the g values are now given by

1,k = gl,k+1(1 +4,) _/\lg2,k+1’
8ik = — /\jgj—l,lc+1 + (2/\;"" 1) &, k+1 _/\jgj+1,k+17
-1,k = — Ay gi-1,61 7t (Ao + 1) g1, k41-

The values for the elements of the tridiagonal matrix 7" are the same as before with the
exception that now

by = A, +1.
The equations are then solved by the same matrix formulation as shown before, enabling us
to calculate H* concentrations at all points downstream of the crystal.

(iii) Comparison of analytical and numerical solutions

The surface concentration profiles for H* downstream of the crystal obtained by the two
methods discussed above are shown in figure 3 for distances x downstream of a crystal length
x,. As can be seen, the analytical solution forms a limit to which the numerical solution
approaches as the flow rate is increased. This is as we would expect, because implicit in the
analytical solution is the assumption that the diffusion layer is thin compared with the channel
depth. This obviously holds for fast flow rates but breaks down as they are reduced. The

5 Vol. 330. A
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1.0

V=107
< 107
S
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~
1 1 1 J
0 0.5 1.0
x/%,

Ficure 3. H* concentration profiles on the floor of the channel downstream of the crystal as
predicted by: ———, analytical theory and , BIFD method.

numerical solution retains the full parabolic velocity profile and so should be able to predict
behaviour at low flow rates much more accurately. We can also see how placing a small pH
electrode close to the crystal enables us to obtain a large difference between measured
concentrations on the surface and in bulk solution.

To convert these concentration profiles into predicted readings on the pH electrode the
logarithms of the concentrations of H on the surface of the electrode were simply averaged out.
In practice it was impossible to construct the cover plates such that there was no gap between
crystal and sensor, as seen in figure 2. This gap was taken into account in the averaging
procedure mentioned above and the measured geometry of the crystal-sensor used to predict
the observed potentiometric sensor response. In figure 4 we see how the concentration profiles
from plots such as figure 3 enable us to predict readings on the pH sensor. The good agreement
between the analytical and numerical solutions to the problem in the region of low pH at flow
rates where we might expect agreement validates the use of the numerical technique in the
region of high pH where an analytical solution is more difficult.
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§ Ficure 4. Predicted pH sensor reading variation with volume flow rate. ———, analytical theory;
= , BIFD method; A, and their comparison with experiment.
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(b) High pH region

The overall strategy for the region of high pH is slightly more complex than for that of low
pH, but has the same aim of calculating the surface H* concentration in the region of the pH
sensor. The general strategy is as follows.

1. By using a chosen surface rate law, we first calculate Ca** concentrations in the region
of the crystal.

2. Knowing the surface Ca®* concentrations over the crystal, we then calculate the surface
H*, HCO; and CO}~ concentrations.

3. Knowing the surface speciation, it is then possible to calculate the speciation throughout
the region above the crystal taking the relevant protonation—deprotonation reactions into
account.

4. From the speciation in the region above the crystal, the speciation downstream of the
crystal is calculated and hence the surface speciation over the pH sensor.

(1) Computational method

The same basic Birp method was used here as discussed previously with the surface rate
equations being incorporated via the surface boundary condition. Thus for Ca®* the surface
boundary condition over the crystal becomes

Oc

D—| =F, (42)
9 lo
where F is the surface rate function and D is the Ca®" diffusion coefficient. As an example of
how the computation proceeds we consider the simple function proposed by Dorange &
Guetchidjan (1978), i.e. .
rate = Kpg(1—([Ca®],/KY,)),

where the relation to equation (1) is obvious. Equation (42) now becomes

% _ E(l_go,k)
ay 0 D K—lgp .
, AyK (. &ox
Therefore Sox— &1,k = —<1 —— 1)
D Kz,
kA KAy \™!
and 8o,k = (—D—y—-i_gl'k)(l_i_DK%y) . (43)
sp

Again, the general equation for the concentration at a point j, £ is given by

ik = _/\jgj—l,lﬁ-l + (2Aj+ 1) gj,k+l_/\jgj+1,lc+l‘ (44)
Thus when j =1

81,6 = - Zo, k1T (24, +1) g4, k1 _/\lgz,lc+1>
which upon substitution of equation (43) for g, , gives us
g0 = — (A, KAy/D) (1+ (KAy/DK%,))™
+gl,lc+1[_A1(1 + (KAy/DKép))'l +2A,+1] _A1§2,1c+1- (45)
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60 R.G.COMPTON AND K. L. PRITCHARD
For j = J—1, including the ‘no flux’ boundary condition at the far wall of the channel gives

gs-1,6 = — AJ—ng—z,Ic+l + (At 1) 8r-1,k+1- (46)

We solve the J—1 simultaneous equations given by equations (44), (45) and (46) by the same
matrix formulation as shown before, giving the following matrix elements:

a; = —A for j=2->J-1,

b= (20;+1) for j=2-J-2,

G ==X for j=1->J-2,

G=g.  for j=2-J-1,

U, =4, for j=1->J-1,
KAy\!

b1=—A1(1+DK§) F2M 1, by =A, 41,

sp
KAy (1 KAy )'1

"D\ DK},

d, = gl,lc+/\1

This matrix equation is solved again by the Thomas algorithm method, allowing us to
calculate Ca®' concentrations vector by vector down the crystal. The surface Ca®*
concentration may be calculated from the value of g, , in each vector via equation (43).

The other rate equations discussed in the introduction were incorporated into the model in
the same general way, with one important difference. This difference stems from the fact that
the rate laws depend upon the surface concentrations of species other than Ca®*. This dictates
that iterative methods are used to obtain surface Ca®" concentrations and the protocol is as
follows. First, we take the surface Ca®" concentrations predicted by the simple Dorange—
Guetchidjan model and, by a method described later, calculate surface H*, HCO; and
CO?~ concentrations from this. We then use these values in our new model to get an improved
estimate of surface Ca*" concentrations, calculate the speciations from this and repeat the
process until convergence of the results is obtained. The different rate equations may very
easily be incorporated into the existing framework for the numerical solution by simply slightly
altering a few of the parameters. The parameters are as given for the Dorange-Guetchidjan
model with the exceptions given in table 1.

We now describe how the surface Ca®* concentrations generated by these calculations allow
us to obtain the surface speciation for H*, HCO; and CO} . We assume that the reactions
occurring at the surface are:

H,0+ CaCO,~ Ca**+HCO; + OH"
or CaCO,;~ Ca® +CO;,
CO} +H,0=HCO;+OH",
and H,O=H"+OH".
Now, by charge conservation

2[Ca*"]+[H"] = 2[CO57] +[HCO;] + [OHT], (46)
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TABLE 1. MATRIX ELEMENTS FOR THE BACKWARD IMPLICIT COMPUTATION FOR
DIFFERENT REACTIONS
rate = K(1—[Ca®*],/K%))

by =A(1+(KAy/D)) 24, +1
4 &, + (A KAy/D) (1+(KAy/DKz,))™
&  ((KAy/D)+g,,) (1+ (KAy/DKE,)™

rate = K(Kép - [Caz+]§ [CO§‘]§>

KAy[CO 3 -1
b, _/\1(1+ -~ y[CO5 18, ki . ) +24,+1
D([CO;7]p, 41 + [HCOGT; 1)
KK} > -1
d, gl,k+/\1 SpAy(l + f_Ay[COa ]0,k+1— . )
D D([CO3 ]0,k+l+ [HCOS]%).IC-O-I)

KK: A KAy[CO% 3 -1
% ( [s;) y+g1'k)(1+ = y[ 3 ]0,k+1_ . )
D([CO5 g, k1 + [HCOGT 101)

rate = k—k[Ca?*], [HCO3],

by —A,(1+ (K[HCOg]y 1.,y Ay/ D))" +24, +1
4 &,xt (A, kAy/D) (1+(k'[HCO;]0_k+1Ay/D))“1
& ((kAy/D)+g, ) (1+ (K[HCOG], \a/ D))

and because the calcium carbonate dissolved stoichiometrically

[Ca**] = [COZ ]+ [HCO;]. (47)
We know also that

K, = [CO;™] [H*]/[HCO3], (48)
and K,=[H"][OH™]. (49)

From equations (47) and (48) we obtain

[CO5] [HT]

KA = [Ca2+] _ [Cog—] > (50)
from equations (46) and (47)
[CO57] = [Ca* ]+ [H']—[OHT], (51)
and thus from equations (50) and (51) we obtain
k. = ([Ca*]+[H']—(K,/[H'])) [H']
* (K./[H"]) = [H"] ’
or [H)*+ [H")* ([Ca**]+ K,) —[H'] K, — K, k, = 0. (52)

This cubic equation is solved by a Newton-Raphson iterative method to give the surface
H" concentration. Knowing both the surface H* and Ca® concentrations we may then
calculate surface CO}™ concentrations from equation (51) and surface HCOj concentrations
from equation (47).

Thus our calculations so far have given us the Ca®*" concentration profile throughout the
solution above the crystal and the surface speciation. We may now calculate the concentration
profiles of the other species using the same numerical techniques, with the surface
concentrations calculated above acting as the surface boundary conditions. To illustrate this
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62 R.G.COMPTON AND K.L.PRITCHARD

consider HCOyj, for which we need to take account not only of its diffusion and convection
away from the crystal but also the effect of deprotonation on its concentration profile, i.e.

kl
HCO; == COj +H".
ky
The convective diffusion equation is modified by these kinetics to give,
ot (6V\(y y\ 0c 2
——\— [zl 1—%]= H*]—k,[H"] = 0.
D3~ (50)(4) (1-4) 5o+ Lcox ) () — k1) = 0
This is then treated in the same way as shown previously for the BiIFpD method giving the
following elements in the tridiagonal matrix:
a;=—A for yj=2->J-1,
by =2)A;+1 for j=1->J-2,
by = (A, +1)
G ==X\ for j=1-J-2,
dy = g (1— (K, Aj(A,l/)z/D)) + (Aj(A.’/)zkz[Cog_]j,lc (H*]; +/D),
dy = g, (1= (k; A,(Ay)*/ D)) + (A;(Ay)* kz[Cog_]j,lc [H*]; /D) +A,[HCO3]y 111
The upstream boundary condition is simply the concentration of the species in the reservoir
supply and the surface boundary condition is the surface concentration calculated previously.
This surface boundary condition comes into the calculation in the expression for 4.
The concentration profiles for the other species are calculated in the same way, with the
following alterations to d; and d,. For the H* calculations
dy = g; (1= (K, A1<A,l/>2 [CO57);./ D)) + (Aj(A?/)z k[HCO3]; /D),
and  d; =g ,(1—(k,A;(Ay)*[CO;7]; /D)) + (A;(Ay)* k, [HCO3]; ./ D) + 7 1 P
For the CO}™ calculations
dy = g (1= (ky Aj(A?/)z [H*]; /D)) + (Aj(Ay)zkl[HCOE]j,k/D>7
and  d; =g . (1—(k 2;(Ay)* [H'], /D)) + (A,(Ay)* k}[HCO;]j,Ic/D> +4,[CO57 T, k-
So we now know the concentration profile of all the species in the region above the crystal,
and from this may calculate their profiles in the region downstream of the crystal. Again we
use the BIFD method but with the upstream boundary condition given by the concentration

profiles at the downstream edge of the crystal and the surface boundary condition a simple ‘no
flux’ condition. This procedure produces the following matrix elements for H*.

a; = —A, for j=2->J-—1,
b;=2M+1 for j=2->J-2,
by=M+1, b, ,=A,,—1, ¢g=—2;, for j=1->J-2,

d; =g p(1— (Aj ky(Ay)* [C‘Og_]j,lc/D)) + (A7<Ay>2k1[HCO§];,k/D)~
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For COZ™ the matrix elements are the same as for H* with the sole exception that,
d; = g; (1= (A k,A;(Ay)* [H'], /D)) + (A;(Ay)* K, [HCO3], ./ D),
and for HCOj the elements are again the same but for
dy =g (1= (4 k\(Ay)?/D)) + (/\j(Ay)2k2[CO§—]j,lc [H*];,+/D).

The no flux boundary condition at the surface tells us that g, , = g; , so we are able to calculate
the surface speciation downstream of the crystal. From this we are able to calculate the response
of the pH electrode for each surface rate equation as a function of a single kinetic parameter.

The constants used in the theoretical work were all corrected for activity effects, to
correspond to the experimental jonic strength of 0.5 mol dm™. As an example of how this was
done consider the second dissociation constant of carbonic acid. If we use a mixed acidity
constant,

K, = ag+[CO;7]/[HCO;],

we need to correct the value obtained from reference data (Stumm & Morgan 1981), which
is a value for infinite dilution, i.e.

Ko =ag+ acog‘/chog
thus ka = K po ')’Hco;/?’cog‘-

The relevant activity coefficients were then obtained from the literature (Walker et al. 1927)
and the necessary correction to the standard data was made. The values of the constants used
are shown in table 2.

TABLE 2. PARAMETERS USED IN THE BACKWARD IMPLICIT MODELLING

K, (calcite solubility product) 1.331 x 107® mol? dm™®
K,, (2nd dissociation constant of carbonic acid) 1.409% 107 mol dm™3
K, (dissociation constant of water) 1.008 x 107'* mol® dm™®

4. RESULTS
(a) Low pH region

In figure 4 we showed the predicted sensor readings as a function of flow rate for both the
analytical and numerical solutions to the problem. Also shown are experimental results
obtained using an aqueous solution of HCI of pH = 2.1 flowing over a crystal 0.4 cm long. We
can see that there is good agreement between the analytical theory and experiment at flow rates
above 1072 cm®s™!, but below this the agreement breaks down. However, the numerical
solution is in good agreement over the entire flow rate range used. This validates the use of the
BIFD method as a means of solution of this type of problem, and illustrates that the
hydrodynamics within the cell are adequately described by the convective diffusion equations
presented above.

(b) High pH region

The results for the three candidate surface mechanisms are presented in figures 5-7 for an
experiment performed at pH = 7.49, with a crystal of length 0.66 cm, and polished with
0.25 um diamond grit. Flow rates between 107® and 0.5 cm®s™ were used and the cell
thermostatted as (2510.2) °C. Figure 5 shows the best fits for a mechanism of the
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Ficure 5. Comparison of predicted pH sensor reading for a surface rate equation of the Dorange-Guetchidjan type
with experiment for bulk solution pH = 7.49. ———, K, = 1.31 X 107® mol cm s™*; , Ky =1.48x1073
mol cm s71; ——-— , Ky = 1.60 x 107 mol cm s7%.
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— - ¥/ (em?s7t)

< S Ficure 6. Comparison of predicted pH sensor reading for a surface rate equation of the Sjoberg type with
> experiment for bulk solution pH = 7.49. ———, K, = 1.85x 107 mol cm s7%; , K, =2.4%x10" mol cm s7%;
O E ———, K, =3.0x103mol cms™".

R~

= O

O Dorange-Guetchidjan type, i.e. equation (1), with the closest fit being obtained, by eye, for a
=w rate constant K $; = 1.48 x 107® mol cm s™'. However, even the best fit is far from satisfactory,

especially at faster flow rates. In figure 6 are the corresponding fits for a mechanism of the
Sjoberg type, i.e. equation (2). Here the optimum fit is obtained with K, = 2.4 x 10~ mol cm ™%,
but again the fit is generally poor. In figure 7 we show the result obtained for the Plummer
type mechanistic equation, i.e. equation (3). The agreement between the experimental and
theoretical results, with £ = 9.5 x 107 mol cm™2 571, is excellent.

Experiments were repeated with a bulk solution of pH of 8.46 and the same experimental

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

A\

P

) |

a

yi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y
A \
J

Y |

Py

Y 4 L
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

10° x [H*]/(mol dm™?)

0

Downloaded from rsta.royalsocietypublishing.org

CALCITE DISSOLUTION KINETICS 65
7
! /}
I {
/ ’
&
L {&‘
v’ {
&/
L }/
i
g0l
?HOJ/ L L L 1 L
0.1 0.2
B/ (em? 571

Ficure 7. Comparison of predicted pH sensor reading, for a surface rate equation of the Plummer type,

with experiment for bulk solution pH = 7.49, £ = 9.5 x 107! mol cm™

2571,

parameters as before, the results of which are shown in figures 8-10 along with results obtained
using the three model equations with the ‘best fit’ rate constants obtained at pH 7.49. The
correlation between the experimental and theoretical data is good, showing the pH dependence
of the model data to be accurate. Thus the kinetic parameters show no pH dependence, which
is in accordance with all experimental work done in this pH range (Dorange & Guetchidjan
1978; Sjoberg 1976, 1978; Plummer et al. 1978; Erga & Terjesen 1956; Sjoberg & Rickard
1984). Once again the best fit is obtained from the Plummer equation (3), which leads us to
choose this as the rate equation that best describes the dissolution processes taking place at the
calcite crystal surface, from those tested. Note, however, that our form of the Plummer

equation uses surface, not the bulk concentrations that were originally proposed.

10%° x [H*]/(mol dm™?)
'S

! 1 1 1 1

0.1 02
Vi/(em®s7)

Ficure 8. Comparison of predicted pH sensor reading, for a surface rate equation of the Dorange-Guetchidjan

type, with experiment for bulk solution pH = 8.46, and £, = 1.48 x 107 mol cm s7".

1
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Figure 9. Comparison of predicted pH sensor reading, for a surface rate equation of the Sjéberg type,

with experiment for bulk solution pH = 8.46, and K, = 2.4 X 107 mol cm s™*.
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Ficure 10. Comparison of predicted pH sensor reading, for a surface rate equation of the Plummer type,
with experiment for bulk solution pH = 8.46, and £ = 9.5 x 107! mol cm 2 s™1.

We showed earlier that in equation (3) the rate constant £’ is related to £ by the relation

k" = k/K,, so that the Plummer type mechanism may be written as

rate (mol cm™*s71) = 9.5 x 10711 —7.14 x 103[Ca?*], [[COZ].. (53)

In table 3 we show some of the results obtained from the modelling work using the above
equation and the experimental conditions described above for the runs done at pH 7.49.

From this we see how, as we reduce the flow rate, we allow a greater build up of reaction
products on the surface. This in turn increases the second term in our rate equation (53) and
so reduces the flux from the surface. We would also expect that as we go further down the
crystal we would get a decrease in the reaction rate caused by the build up of reaction products.
In figure 11 we show the flux from the surface for these different flow rates as a function of
distance x down a crystal of length x, where x, = 0.66 cm. The computed fluxes show the
expected decrease.
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Figure 11. Flux of Ca®* from the surface predicted by equation (5) with £=9.5x 107!,
as a function of distance x down the crystal length x, and flow rate.
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TABLE 3. RESULTS OBTAINED FROM EQUATION (53)

| 10 x flux 10° x [H*] measured 107 x bulk[Ca?*]

(cm®s71) (mol cm™2571) (mol dm™3) (mol dm™3)
0.25 9.03 42.5 1.36
0.20 8.95 32.6 1.68
0.15 8.83 22.2 2.21
0.10 8.61 121 3.24
0.05 8.13 41.9 6.11
0.01 6.51 17.3 244

In figure 12 we show the concentration profiles for all the species concerned in the region

above and downstream of the crystal, under the conditions described for the pH 7.49

experiments at a flow rate of 0.01 cm®s™'. The plots show the concentration profiles in the

xy plane with the z axis representing concentration. The plots relating to the region over the
crystal show the expected increase in concentration as we go down the crystal, for the reaction
products. We can also see the depletion of the H* concentration caused by the following
reaction,

H,0+CO2 =HCO; +OH".

The plots in the region downstream of the crystal show the decrease in product concentration

THE ROYAL A
SOCIETY L%

on the channel floor as we go further away from the crystal and the continued diffusion of these
products into the bulk solution.

The results presented above show once again how important the precise hydrodynamics of
the system are. The flux variations with the flow rate shows that to make predictions about
dissolution rates under conditions different from our particular experiments we require a
detailed knowledge of the hydrodynamics involved in the systems of interest.

The maximum dissolution rate that this model would predict is one 0of 9.5 x 107" mol cm™2s7!
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which is approached for small crystals and high flow rates. This is to be compared with
Plummer’s experimental results (for rate equations using bulk concentrations) in which initial
rate of dissolution of 1.2 x 107 mol cm™2 s™*. Previous work (Compton et al. 1986 a) has shown
the importance of surface morphology effects on dissolution. Thus it is important to consider
the different surface preparations used in both cases. The powders used in Plummer’s work
were washed in dilute HCI, which will cause a degree of pitting. In our experiments the crystal
surface was polished with a succession of grit sizes down to 0.25 pm. Thus the surface of our
crystal is liable to be smoother than those of Plummer’s powders and so we might expect our
maximum flux to be smaller than that obtained by Plummer. In the work published by Sjéberg
using rotating calcite discs (Sjoberg & Rickard 1983) a rate constant of 7 x 107 mol cm™2 s™*
was observed. In that work the crystal preparation involved polishing to 30 pm then etching
in 1072 HCL This procedure is liable to produce a much rougher surface than our
preparation and may account for the larger rate constant measured.

5. CONCLUSION

We have described a new technique that may be applied to the study of the dissolution of
calcite under high pH conditions and have developed a general computational technique that
allows us to probe the surface rate law and discriminate between candidate dissolution
mechanisms. This work has led us to choose the following rate equation as the one that best
describes the rate of dissolution in terms of surface speciation

rate (mol cm™s7!) = k—£'[Ca®"] [COj],,

when k" = k/K,, and k is dependent upon surface morpology.

We emphasize this equation has a fundamental difference from other equations that attempt
to describe dissolution, in that it deals with concentrations at the surface of the crystal rather
than bulk solution concentrations. It should not be necessary for us to point out that because
the surface is the region where dissolution takes place, the surface concentrations must have a
more fundamental part to play in the kinetics than concentrations measured at some distance
from the surface in bulk solution. We thus conclude that the equation given above is the most
physically significant equation yet proposed for the dissolution of calcite.

We thank the NERC and the Freshwater Biological Association for a CASE studentship for
K.L.P., Patrick Unwin and Alan House for useful discussions, Margot Long for typing the
manuscript and the late David Koslow for producing the figures.
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